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ABSTRACT

The problem of a probability assessor who has, directly or indirectly, given

two different numbers for hhe probability of one event is addressed.

In order to use these assessments in, for example, a decision analysis, these

two numbers must be reconciled to give one value as the probability. The pre-

vious work on this subject by Lindley, Tversky and Brown (1979), and own and

Lindley (1979) is explored. In particular the paper by Lindley, Tvers y and

Brown is summarized and discussed in the light of its practicability. A philo-

sophical discussion of our perspective when attempting such reconciliations is

given, together with an indication of how the present work relates tb similar

problems addressed in the past. We also discuss the potential role of an axio-

matic extension to probability theory. - . .

A detailed mathematical exposition is given concerning the calculation of the

least-squares reconciliation proposed by Lindley, Tversky and Brown (1979), in

both probability and log-odds metrics. it is shown that the method of recon.-

ciliation they have proposed is formally equivalent to that of taking a weighted

average of log-odds, with weights proportional to the independent information

content of each assessment. This method has the advantage of being simple in

application. It is further argued that the motivation for taking multiple pro-

bability assessments is an attempt to obtain more information from the subject,

and that the proposed method of reconciliation captures the essence of this

motivation. The relationship between this research and the well-known "expert-

use" problem is explored. Finally, a discussion of alternative potential ap-

proaches to the reconciliation problem is included.

Key words. Decision analysis; probability judgments; coherence; log-odds; least-

squares; information; expert use.
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1.0 -THE PROBLEM

1.1 Introduction

This report presents some research following from the work of Lindley,

Tversky and Brown (1979), and Brown and Lindley (1979) on the

reconciliation of incoherent judgments. We discuss the problem and the

motivation for studying it and summarize the paper by Lindley, Tversky and

Blown (LTB). We show some shortcomings of their work, in particular

pertaining to the practicability of their proposed ethodology, and then

present some extensions of their ideas. We go quite a long way towards

deriving an alternative operational pro-,edure, but it is pointed out that

further research is still necessary in this direction before the procedure

is truly operational.

1.2 The roblem, and the Motivation for Studying It

When a subject, S, is asked to produce judgments (about utilities,

probabilities, or even preferred decisions) in a variety of different

ways, it is quite likely that the responses will contradict each other in

some way, or fail to satisfy the computational constraints imposed by the

probability calculus. Perhaps the most obvious example of this occurs

when a decision analysis is carried out, and the selected alternative

differs front the option that S had chosen via direct introspection.

Another example occurs when S produces numbers for the probability of a

"target event" A, P(A), in two different ways, and these two numbers

differ.
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To provide a concrete example of this latter situation, suppose I am

interested in the target event that Oxford University will win their next

annual rowing race with Cambridge University. Taking all things into

consideration, I decide that this has probability 0.7. Then I decide to

make the assessment by conditioning on Oxford winning the toss. I decide

that I believe they have a chance 0.8 if they win the toss, but only 0.5

if they lose the toss. Assuming the probability of winning the toss to be

0.5, these latter two assessments imply a probability for the target event

of 0.65, and hence I have caught myself in an inconsistency.

Typically in such a situation, one of the judgments will be considered

"better" than the other, and the other judgment simply ignored. So, for

example, when a decision analysis has been performed for a decision, it is

usually assumed that one should trust the analysis more than a non-

analytical, intuitive, judgment. Again, if one has arrived at the

probability of a target variable in two ways, once directly (holistic

assessment) and once by obtaining probabilities conditional on another

event (decomposed assessment), the decomposed assessment will typically be

used and the holistic assessment disregarded. In fact, this selection is

often made implicitly, before any assessments are made, and only a

"minimally-specified" set of judgments is taken, e.g. only the decomposed

assessment, so that there is no chance for incoherence to be discovered.

However, I may have a strong gut feeling that a decision analysis failed

adequately to capture all my opinions about a decision, and that my direct

choice really did have something extra to offer. Similarly, I feel that

0.65 is too low for the probability of Oxford winning, and that my

holistic assessment may have captured aspects of my uncertainty left
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untapped by the decomposed assessment. Had I not tried multiple

approaches to the elicitation I would not have discovered this. The

fundamental thesis of this paper is that there is something to be gained,

in terms of digging into S's psychological field, by pursuing several

alternative methods of eliciting the same judgment. For further

discussion of this motivation, see Brown and Lindlev (1979). This paper

looks only at inconsistent probability assessments, although this is just

a small part of the much wider field of inconsistent judgment.

At present, if multiple assessments are used, and inconsistency

discovered, S will typically have the inconsistency pointed out to

him/her, and be requested to perform the reconciliation informally. The

research described here attempts to provide a theoretical basis leading to

a practical technique for a formal reconciliation procedure. Such a

theoretical basis is desirable to aid S in the reconciliation. Perhaps

more importantly, a theoretical foundation will raise these procedures to

the same level of credibility and defensibility as the rest of decision

analysis, and will, we hope, cause practicing decision analysts to view

this seeking out of inconsistency as an integral part of a good decision

analysis.
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2.0 SUMMARY OF LINDLEY, TVERSKY AND BROWN, AND COMMENTS

2.1 Introduction

In this section we summarize and discuss the main points of LTB. These

comments are then used as the starting points for the further research

which forms the r-mainder of this paper.

2.2 A Mathematical Formulation of the Problem

We suppose there is a subJect, S whose probabilities qi, i-I, ... ,n we

have elicited. These probabilities will typically be inconsistent. Our

aim is to provide a reconciled set of probabilitiesi i, i-i, ... , n which

satisfy the constraints specified by the probability calculus, which can

be stated in the form fj (I1 "." ,vn) - 0, J-i, ... ,n. We shall use

vector notation for simplicity, in which case the constraints can be

stated as f (11) - 0. As an example, suppose S provides probabilities for

an event h and for its complement, -A, each of 0.4. Then q1 - 0.4, q2 -

0.4, and the single coherence constraint is7T1 + 12 - 1. This can be

viewed geometrically in Figure 1.

The assessed q is the point (0.4, 0.4), and this is incoherent as it does

not lie on the constraint set represented by the line 71 + - 1. Our

reconciliation task is to find one point on the constraint set which is in

some sense "the best." This is T1.

2.3 Brief Summary CE the Assumptions and Results of LTB

The basic model that the authors use is a measurement error model. They

assume that any subject who gives an incoherent set of probability

2-1



P (-A) 7 + T 21

q

P (A)

FIGURE 1

A GRAPHICAL ILLUSTRATION OF INCOHERENCE
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judgments in fact has a coherent set of probabilities, W , latent within

him/her, but which can only be verbalized with a certain amount of error.

By viewing this error as a random variable, we have a measurement model

which is amenable to standard Bayesian statistical analysis.

The assessed qi's are viewed as readings on W~ together with a measurement

error. LTB then introduce the concept of a coherent investigator, N, who

provides information about this measurement error. They suggest two al-

ternative Bayesian procedures to arrive at i. Both these procedures re-

quire the following three probability distributions from N.

i) p(A); N's (coherent) probabilities corresponding to q

ii) P( ZIA): N's view of what S will have as true probabilities,
if A in fact obtains.

iii) p(qI1i ): N's opinion of what S will say, if the true probabilities
are in fact it

These three distributions can be viewed as representing, respectively, N's

own beliefs about A, N's model of S's knowledge acquisition, and N's model

of S's performance as a probability appraiser. It should be noted that we

assume that p(q ) = p(qIZ,A), so that S's measurement error does not

depend on whether A in fact obtains or not. With these three distributions,

the authors of LTB develop an internal and external approach. In the in-

ternal approach, N derives a probability distribution for n updated in the

light of the elicited q, p(wlq), and uses this to arrive at w, so here r

is viewed as a "best" estimate of the true it. In the external approach,

N updates his/her own probabilities for A, in the light of the information

provided by q. So here, wt is N's revised view of the world, p(Alq).

Figure 2 shows diagrammatically the way N combines the probability dis-

tributions for each approach.
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INTERNAL APPROACH

p(II A) p (A)

WE ELICIT P(HIA)p P(A)

AND P(qlH), THESE ARE
p(q II)P( THEN USED CONSECUTIVELY

TO DERIVE P(ll), P(HIq)

AND HENCE II,

- AP( q) HI n q)- HI

EXTERNAL APPROACH

p(ITIA) p(qll)

WE ELICIT P(IIIA) AND

P(q III) AND P(A), THESE
p (A) p(q I A) ARE THEN USED, CONSECU-

TIVELY, TO DERIVE P(qIA)
AND P(Alq).

p(A jq)

FIGURE 2

THE INTERNAL & EXTERNAL BAYESIAN UPDATING APPROACHES
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Within the internal approach, the authors develop a least-squares

estimation procedure, based on the assumption that the measurement error

is normally distributed. (They suggest that using log-odds increases the

validity of this assumption.) Some specific examples and calculations are

given, and results derived showing tremendous increases in precision of

estimates, when several judgments are elicited and then reconciled. These

results are all based on the assumption that the errors in the elicited

probabilities are independent. A particular conclusion of the paper is

that conditioning the probability of an event on an equiprobable partition

of event space will provide the greatest increase ii precision of an

estimate. The authors call this procedure "extending the conversation."

2.4 Some Comments On LTB

My comments and criticisms lie in two areas, 1) philosophical and

psychological and 2) mathematical. The comments in area 1) mainly concern

the assumption of the existence of "true" probabilities, 7 . While the

axiomatic systems leading to subjective probabilities do permit the

postulation of such nli, their psychological reality is, at best, very

dubious. Hence one of the distributionq required in the Bayesian

approach, p(q17), may not be psychologically meaningful, and hence is

very hard to assess. This throws doubt on the usefulness of the Bayesian

approach as a practical reconciliation tool.

It is also the case that the 71's cannot be viewed as subjective

probabilities if one looks at a rigorous mathematical analysis of the

Savage axioms. This point is explored in an unpublished DSC manuscript by Robin

Bromage. The difficulty lies in the fact that Savage probabilities can
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only be assigned to events which are, in fact, resolved at some time, for

only then will we receive the payoff about which we are making our

judgment. However, the human ability to ab:;tract allows us to make

judgments about how we would feel, were the payoff achievable, and the

probabilities thus derived ought not to be very different from the strict

Savage probabilities. Hence this point is in fact not very worrisome.

The status of the 7 's is more fully explored in Section 3.0. The point we

wish to make here is that the authors of LTB claim that the assumption of

the 7's is vital to any reconciliation procedure. The recurrent theme of

the present paper is that such a contention is false. By attempting to

analyze the concepts underlying LTBI develop an alternative approach to

RIJ, which does not use the measurement model directly. This extends the

least squares ideas of LTB, and is discussed in Section 5.0.

A second difficulty lies in the assumption of N. Who is this fully

coherent investigator? LTB appear to view N as a part of our subject,

in a more reflective mood. If one views decision analysis as a procedure

in which all the judgmental inputs come from S rather than the analyst,

then LTB's view of N is more satisfactory than assuming him/her to be the

analyst. For the extern"1 approach would then view the subjects'

judgmentc purely as evidence to update the analysts' opinions, and this

takes the decision analyst far away from a supposedly neutral, purely

analytical, role.1 The internal approach also depends very heavily on N's

judgment and again, this situation may be regarded as somewhat

unsatisfactory. If, on the other hand, we view N as a part of the

subject, we shall be asking some very strange questions. For example,

to get p(A), we shall have to ask:

2-6



"I'm afraid the q's you have just given me were inconsistent. Could you

please give me a coherent set of probabilities p(A), so that I can use my
A

method to find coherent probabilities, Tr?"

Why would we not simply use p(A) instead of q(A)? This raises the general

question of second-order incoherence. N will typically be incoherent too,

so his/her judgments will need to be rec3nciled. This is further discussed

later. A third difficulty arises in the internal approach. Even if we
Acan get the distribution P(7II q), how do we then arrive at TI ? LTB tell us

to take ~ = E (tI q ), but there is no reason why these r should satisfy

the constraints if these are non-linear.

This is because our analysis using Bayesian updating only permits us to

arrive at the distribution P(TrI q), and then to extract the marginal

distributions P(T ilq). If we have a constraint of the form

TI 1 f( T 2) then our analysis assures us that P(r 1jq) = P(f( Tr2
1q))"

However, if we then take expectations, we may not be sure that E( 7T11q)

(which equals E(f( T 21 q) ) by definition) will equal f(E( Tr 21q)), unless

f(.) is a linear function.

Our other criticisms of the mathematical structure of LTB are directed

primarily at the independence assumptions in the least-squares procedure,

and the effect these have on the conclusions about extending the

conversation.

2-7



It can be shown that the dramatic increases in precision found by the

authors' calculationc arise mainly out of these independence assumptions.

Such assumptions are equivalent to saying that each assessment contains

totally new information. As information and precision are closely related,

it is not surprising that the increases in precision appear. In fact, in-

dependence is a false assumption in most cases; for example if someone al-

ways gives optimistic assessments, then his/her "errors" will have strong

positive correlations, as the probabilities will tend to be "too high."

The importance of this fact, and the detailed calculations showing its

effects, are discussed in Section 4.0.

One of the problems with RIJ is that the measurement error theory tends to

pervade our thinking even when not being explicitly used. Concepts such

as independence and correlations derive from a probabilistic interpretation

of errors, which is precisely the measurement model. Such concepts aze

ordinarily used to describe connections between observations when no satis-

factory explanatory description can be made. It is our contention that,

given a set of inconsistent assessments, we can gain some idea of what

the sources of this inconsistency are. In that case we ought to develop

different models for reconciliation depending on the relevant sources.

The measurement model should really be viewed as a last resort, when all

else fails, and we are forced to consider incoherence as the result of a

purely random process. The different possible sources of incoherence are

examined by Detlof von Winterfeldt (1980).

Another observation which is perhaps relevant here concerns the concept of

"error." When a subject produces inconsistent probabilities, the only
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error we can point to, from a mathematical perspective, is that the axioms

of probability are violated. We ought to be careful about saying, without

some type of measurement model, that one estimate is "too high." This

carries connotations of implying error from a "true" probability, whereas

(if we are going to try and avoid the assumption of such true prob-

abilities) we ouqht only to describe it as deviatinq from a number

with some essentially arbitrary characteristics, e.g., that number with

which the subject feels most comfortable. An examination of what

characteristics we should look for in a reconciliation and what the

implied definitions of "improving" are, is developed in more detail in

Section 3.0.

2.5 The Underlying Motivation for RIJ

In order to decide upon a good methodology for RIJ, it should be made

clear what our motivation for the work is. It is to enable us to get the

best probability estimates possible. As pointed out before, it is unclear

exactly what is meant by "best," but one desideratam surely is that the

subject should take as much of his psychological field into account as

possible. One way this can be achieved is by making as many different

attempts at eliciting a probability as possible, rather than using only

one minimally-specified set of readings. It is in this situation that the

potential for incoherent judgments develops, and our extra elicitations

are of course of no value if we have no method, however simplistic, of

getting a reconciled value from the assessments. The underlying

motivation for RIJ, then, is to allow us to dig as far aa possible into

the subject's psychological field, without getting results with which we

cannot cope.
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The necessary subsequent research is to devise a digging procedure, i.e.,

to enable us to formulate a strategy in a given situation which will

permit us to decide a priori what sort of decomposed estimates to ask for.

This methodology should also tell us a posteriori how well we have done,

and what further digging may be necessary. In order to help towards this

end, our RIJ research should have some quantitative indication of the

precision of reconciled estimates.

The two primary elements which appear to lead to increased precision are:

1) Further consideration of items of information in the subject's data
base which had formerly been only cursorily examined.

2) Improved mathematical manipulation of probabilities, by decomposing
assessments and writing down explicitly the probability calculations
involved.

The assumption which underlies the common belief amongst analysts that

"decomposed is best," and indeed the whole DA paradigm, is that by

splitting up a problem into smaller parts, and building formal, explicit

probability models, we may gain improvements under both 1) and 2) above.

An approach to RIJ which quantifies this concept, and explores the

limitations of the above rationale is discussed in Section 5.0.
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3.0 FOUNDATIONS

3.1 Introduction

In this section we discuss briefly the various alternative approaches to

RIJ that have so far been identified and the different general

philosophical viewpoints underlying each one. The reasons fcr suggesting

each approach are examined in detail. The following sections then deal

with the technical details of each approach, and discuss the extent to

which each methodology can, in fact, achieve successful reconciliations.

3.2 True Probabilities

The concept of true or authentic probabilities is one that is beginning to

recur in the decision-analytic literature (see e.g., LTB, or Tani, 1978).

These articles reflect the growing realization that the normative decision

analytic theory is often shown to be incomplete when real probability

assessors become involved. In an attempt to counter the fact that people

are sometimes unable to act in accordance with the theory, it is

convenient to postulate the existence of numbers with which people would

operate according to the probability calculus, if only these people were

capable of accessE.g the numbers. There is certainly nothing in the

mathematical theory of subjective probability which refutes this concept,

but that must not be taken as a proof of their existence. We should also

take great care, when introducing such a concept in a given situation, to

insure that such an introduction is in fact useful, and does not produce

more problems than it solves.

The major difficulty with the concept of true probabilities lies in the

use to which these probabilities are put. The idea is that elicited
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probabilities are simply imperfect approximations to the true prob-

abilities. Then, since we do not know just how good an approximation

we have made, we build a probability distribution describing the possible

value of the true probability, given our elicited value. Then we may

perform a decision analysis, using the information about the true

probabilities, instead of a direct use of the elicited values. This may

sound very plausible at first reading, but on further examination, there

are some major problems with the above procedure.

First there is no evidence that such true probabilities have any actual

existence. On the contrary, much of the psychological literature provides

direct evidence discrediting the notion of true probabilities. (See

Phillips contribution to the discussion of LTB.) In this case, as

Phillips points out, the distribution p(ql1T ), which is essential to the

RIJ methodology of LTB, is not psychologically meaningful. There is a

tendency to view 7 as that probability that a subject would arrive at,

given infinite time for reflection (Brown and Lindley, 1978, and Tani,

1978). This would not help with the elicitation of p(q lM, for how can a

subject be expected to give a sensible assessment of what he would think

if he spent longer thinking?

The author feels that the entire concept of "true" probabilities arises

out of the tendency of Bayesians to believe that, within the field of

declsion-making, v robability theory must be the appropriate modeling tool.

So, in this situation, when we discover that the probability axioms are

being viol].ted, a second-level model is built, with hypothetical true

probabilities included, so that we may once again use probability theory.
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It is an ingenious mathematical trick, but there seems to be an element of

getting the situation to fit the theory, rather than adapting the theory

to fit the situation, which I would contend was the real aim of

mathematical modeling. There is perhaps a suspicion here that we are

clinging to old and trusted friends when they can really do nothing to

help us. On the other hand, there is often a counter-tendency to throw

out old methods as soon as we have difficulties with them (cf. the

current high divorce rate in the U.S.) rather than trying to work out

these difficulties within the existing system. It is better, whenever

possible, to try out all the available alternatives, a,,d base our choice

of methodology on a full examination of these. LTB have developed the

Bayesian method of performing reconciliation. In this paper we develop a

heuristic based on an approximation to their technique, and in a

forthcoming paper (Freeling 1980a) we develop another alternative, based

on a different axiomatic theory (Fuzzy Set Theory, see Zadeh, 1965,

Freeling, 1980b). These alternatives should be compared to decide upon

their appropriateness in different situations.

When we are dealing with multiple experts, whose knowledge a DM is

obtaining via probability assessments, in order to improve his/her own

probability assessments, then the Bayesian updating paradigm is an elegant

way of modeling the DM's problem. Then the IT's would have an

interpretation as the DM's probabilities. When we have only one

probability assessor, we have to postulate a hypothetical split

personality, and a hypothetical "meta-DM" who wishes to update his/her own

(true) probabilities. Not only is the postulate somewhat clumsy, but it

also, of necessity, involves us in third- and higher-order probability
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assessments. For, if we discovered incoherence in the initial probability

assessments made by the DM, we are likely to discover incoherence in his/her

second-order, more difficult, judgments. This means that we shall have to

elicit further judgments in order to reconcile these second-order

assessments, and so on, ad infinitum (see Section 3.5).

When faced with a situation where a normative model is proving inadequate,

due to its being insufficiently descriptive, we have two alternative ways

of proceeding. We may either accept the limitations of our present model

as an approximation to reality and "work within these limitations, or we

can attempt to enrich our normative model by extending the axioms in such

a way as to better model reality. If we take the first course, extra

effort must go into transforming observed behavior into a form compatible

with the normative model, whereas such transformation will hopefully be

unnecessary if we enrich the model successfully.

In the context of RIJ, these two alternatives take, respectively, the form

of 1) discovering a mathematical procedure which produces consistent,

conventional probabilities from incoherent elicited probabilities, or

2) extending probability theory in such a way as to allow the elicited

values to be direct inputs to the decision model.

3.3 The V's as Parameters

What is the reason behind introducing a Bayesian updating, and thenf's?

Surely it is not intended in any way to extend the theory by making it

more behavioral, but rather it is a mathematical davice which is being
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used to cope with an awkward situation. In that case LTB may not intend

to imply that a given subject really does, somehow, have a set of true

probabilities. ! is simply a parameter which can, we hope, enable us to

gain a better understanding of the underlying process.

Parameters are very often introduced in this manner in statistical

inference models. Justification for such an introduction must be made on

the grounds of whether the parameter really helps the inference. Thinking

in terms of the mean and variance of a Normal distribution is often very

useful. Part of the reason for this is that spread and central tendency

have intuitive meanings. However in the present situation, as argued

above, r , even if interpreted as a true probability, does not.

Furthermore, a Bayesian updating is typically of value when thure is

good reason to believe that a random process is underlying a situation.

Where there are inconsistent probability assessments, there is often a

causal explanation of the inconsistency available, and in this case, the

Bayesian model is inappropriate. For this reason, the work by von

Winterfeldt (1980) is of particular importance. In Section 6.0 we briefly

examine alternative methods of reconciling judgments, relating them to the

possible identified sources of inconsistency.

I must once again stress that it is in no way my intention to negate the

value of the work described in LTB. It has brought forcefully to

attention a potentially serious difficulty with applying decision-analytic

methods and equally importantly it builds a mathematical structure for

analyzing the problem. By examining that structure critically, we hope to

provide practicing analysts the means to decide rationally what
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reconciliation methodology is appropriate for them to use. The method

advocated in this paper is intended to be simpler than the method of LTB

and it is hoped sufficiently useful to apply in the majority of

situations. The ideas based on Fuzzy Set Theory are part of the initial

stages of an extended theory of belief, which the author feels is only

partially developed, but which should be vigorously studied if analysts

are to remain responsive to the needs of decision-makers.

3.4 The Role of Bayesian Updating

The technique of RIJ developed in LTB does not lie clearly in either of

the two areas outlined at the end of Section 3.2. This is due at least

partly to confusion over the interpretation of the entity n , as true

probability, or as parameter. When V is viewed as a "true" probability,

we are reinterpreting the rationale of subjective expected utility to mean

that a DM attempts to maximize the expected utility calculated with

his/her true probabilities, and that as we can never know these true

probabilities we attempt to get the best estimate for them that we can.

In that case I would argue that what we are actually doing is extending

the decision-theoretic framework in an attempt better to describe the

workings of the mind of a DM, though we may use the tried and tested

calculus of probability within this description. It should however be

made clear that there is an implicit extension of the axioms involved

here; viz., that we should attempt to maximize expected utility calculated

with these true probabilities rather than with the elicited probabilities.
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If, on the other hand, we interpret 7 as simply a parameter, then this is

just a mathematical construct to help us provide consistent probability

inputs to our decision-analytic model, cf. alternative I of 3.2.

As an axiomatic extension, we do not believe the concept of true

probabilities to have been very succesful. It is not acceptable as an

improved descriptive theory, since it contravenes too much of the existing

psychological literature. The work already mentioned using Fuzzy Set

Theory (Freeling 1980a,b) should be compared with LTB viewed in this

light. The author believes that some such extension of the calculus we

use to model uncertainty will, in the long run, prove to be of the most

value.

So far as the parametric interpretation of r goes, it should be compared

to the heuristic discussed in Section 5.0. Both methods use mathematical

manipulations to transform our elicited probabilities into acceptabls

inputs for a decision analysis. The selection of a particular technique

in any given situation will depend on the context.

3.5 Extending the Axiomatic System

Brown and Lindley (1979), state that enriching the axiomatic structure is

"unlikely to be successful," and support their claim with an analogy to a

surveyor engaged in the measurement of angles. Such a surveyor does not

extend the axioms of Euclidean geometry to explain differences in the

measurements, but uses an error theory. However, this analogy may be

inappropriate to the problem of RIJ. In this section we provide a

counter-argument for the use of an axiomatic extension, and support it

with a continuation of the above analogy.
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Our view of the psychological reality of subjective probabilities may be

roughly stated as follows. We view the DM as a "black box," as in systems

theory, about whose internal mechanisms we know nothingi we can, however,

observe the inputs to and outputs from the black box. In the case of

a DM, the inputs are data from the real world, and the outputs are the

decisions taken. The DA paradigm, then, is simply a model we make of the

internal workings of the DM's mind. The value of the paradigm lies in the

fact that, in most cases, the variables in the model (i.e. probabilities

and utilities) have sufficient intuitive appeal (i.e. are sufficiently

descriptive) to the DM for him/her to be able to place numerical values on

them, and thus use the model as a normative decision aid.

However, in using this DM model, we do not (or at least, we ought not)

claim that the actual workings of the black box are as in our model. Tite

probabilities we use are, at best, an approximation to whatever actually

occurs in the human mind. There is a vast amount of psychological

literature showing that the Savage axioms are only approximately obeyed by

real subjects (e.g. Slovic and Tversky, 19741 Kahneman and Tversky, 19791

Tversky, 1969). In this case, there is no such entity as a "true"

probability that actually exists within a DM's mind, and probing deeper

and deeper for such a number must inevitably lead to asking questions

which do not have a clear intuitive meaning to the DM. In this case we

can only expect further contradictions and confusion to arise.

Brown and Lindley (1979) are aware that with the Bayesian updating

approach to RIJ, there is a potential for second-order incoherence, which

they suggest could be reconciled in the same way as the initial
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incoherence (i.e. using a Bayesian approach). This leads to the concept

of an infinite regress, which the authors suggest may converge to a single

value, T . In the context of our "black box" model, such convergence

appears most unlikely. This is because w: would be asking the DM to be

ever more precise about a concept which is perforce only a vague one in

his/her mind. Even if convergence occurred, we would have to expect that

the convergence was a mathematical phenomenon, rather than an accurate

model of a real process. We should be very careful of putting an

intuitive explanation to the limit point achieved. The mathematics of the

regress are, however worthy of attention, to see if convergence can in

fact occur, and whether such a limit does have an intuitive explanation.

We may extend the analogy of the surveyor here. We are not, however, in

the situation of taking several "readings" on a particular quantity.

Rather, we are in a similar position to a surveyor who is measuring angles

over a very large area of ground, so that the earth's curvature becomes a

factor. The Euclidean result that the angles of a triangle always sum to

1800 could be used to reconcile the surveyor's readings, but, in fact, we

know that plane geometry is simply an approximation to spherical geometry.

In this case, then, the correct way to proceed is to extend the axiomatic

system by taking the earth's curvature into account, and work with

spherical geometry. This exemplifies the fact that when the approximation

with which we are working can be shown to be inadequate, it is correct to

seek a better approximation. On the other hand, the fact that an

extension of the axiomatic system may provide a more precise view of

reality, as with spherical geometry, does not mean that the cruder

approximation is to be discarded. In many situations, the simpler model
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is satisfactory, and so should be used, e.g. 360 is a sufficiently

accurate value of the number of degrees in the angles of a square room --

nobody would bother calculating the error due to the earth's curvature.

Another example of a successful axiomatic extension which is usually not

necessary for calcu,.ations is the extension of Newtonian dynamics to

relativistic dynamics.

When dealing with RIJ, the types of axiomatic extensions at present

available to us would replace probabilities by "approximate

probabilities." These would, roughly speaking, replace the present

precise probability values by ranges of permissible values. The previous

work on such extensions was performed by Dempster (1968) and Smith (1965)

who produced ranges for probabilities, by Shafer (1975) who has extended

the work of Dtmpster and Smith to provide a new evidential theory of

belief, based on entities he has termed "belief functions," and by Watson

et al. (1979), and Freeling (1979, 1980h), who used the new ideas of Fuzzy

Set Theory (Zadeh, 1965) to produce a richer extension. An example of how

the fuzzy set ideas could be used to explain away inconsistent probability

assessments is given in Freeling (1980a).

Although I believe that working with axiomatic extensions is a valuable

direction in which to proceed, it is clear that we are not yet very close

to an adequate extension. There is therefore a great deal of value in

continuing the previous work on RIJ, and trying to produce consistent

probabilities from elicited inconsistent ones. Furthermore, even if an

adequate axiomatic extension is found, a good procedure for RIJ based on

Savage's axioms may prove more useful in the majority of situations, aw a
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proxy for the more complete analysis. For this to be the case, it would

be preferable for the RIJ procedure to be as simple to apply as possible.

This desideratum is a motivation for much of the research described later

in this paper.

3.6 Philosophical Background

It is worthwhile at this point to take a look with a very broad

perspective at our purpose in pursuing research in this area. The

discussion in this section draws partly on the work in the philosophical

literature on Inquiring Systems (see for example, Churchman, 1971; Mitroff

and Turoff, 1975; Mitroff, Betz and Mason 1970; Mitroff 1974).

The main thesis of this section is that, underlying any form of scientific

inquiry, there must be a philosophical basis or theory about the nature of

the world, on which that inquiry ultimately depends. The authors

mentioned above classify an Inquiry System (IS) in accordance with the

general philosophical view on which it appears to be based. The types of

IS they define can be broadly placed into two categories -- those which

rely essentially on one model to arrive at "truth" (be this model

empirical or theoretical) and those which believe that truth can only be

arrived at by taking into account several different models. The

traditional method for dealing with potential inconsistencies appears to

arise out of an IS in the first category. The procedure very often

applied is simply to take only a minimally specified set of readings (i.e.

to use only one model), so that there is no potential for incoherence. An

alternative method is, if inconsistent probability assessments are

discovered, to look at these, decide which the subject feels are "wrong"

3-11



and then simply discard them. This is effectively the same as using only

one assessment, although we have used somewhat more information in

choosing which assessment. If neither of the above methods are liked, the

present practice is to ask the subject to choose a value which he/she

finds easiest to "live with" (see e.g. Brown, Kahr, and Peterson, 1974).

An attempt at formalizing this procedure is discussed in Section 5.0. It

will be noted that such an idea still does not make use of the concept

that having alternative models is a necessity to arriving at truth.

It is our contention that such a concept is the correct one for a

foundation of our work in RIJ, i.e. that we should use an IS which falls

into the second category discussed above. For, surely, the motivation for

wishing to take more than a minimally specified set of assessments is that

by using different models of the uncertainty, we can improve on the values

achieved with only one model. (The alternative potential models here are,

for example, holistic assessments, as opposed to conditioning on various

events.) By achieving some form of synthesis of the results from the

different models, we hope to have improved our understanding of the world.

The work in LTB seems to be based on the assumption that we have only one

model, and that each assessment of the target probability is one reading

taken with this model. It then makes sense simply to build a measurement

theory to reconcile these readings. If we are thinking of the assessments

as coming from different models, however, we should concentrate on finding

the strengths and weaknesses of each, and using this information as the

basis from which to arrive at an "improved" probability value. We thus

are not thinking in terms of errors made by the subject--rather we
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consider the assessments to be the results of different approximating

models each of which provides us with information about the uncertainty.

Our reconciliation procedure should thus attempt to quantify the accuracy

of each approximation model, and formally arrive at a reconciled value.

It is also hoped that such quantification will permit us to suggest which

approximation model, or combination of models, would be most appropriate

to use to gain a better understanding of the nature of the world. This is

the same concept as the "design problem" posed in LTB, or the question of

"digging" introduced by Brown and Lindley (1979).

0 The differences in separate assessments can be ascribed to the two aspects

of the elicitation process mentioned in 2.4 (i.e. different information

considered, and different ways of processing it), and also to errors such

as biasing, optimism/pessimism etc., It is convenient to treat these

latter problems separately from the first two, by identifying the errors

and eliminating them as far as possible before a final reconciliation is

performed. An example of how this might be done is given in Section 6.0.

We shall, therefore, assume that the inconsistency arises only from

discrepancies in data and in processing. It is, after all, such

discrepancies we are seeking.

We are now moving closest to the Hegelian dialectical IS (see Mitroff et

al. 1970). This takes the view that to arrive at "truth," we should take

two models with opposing theoretical bases, but with access to the same

information, and by examining the ways in which these disagree, arrive at

a synthesis which represents an improved "Weltanschauung." With RIJ, the
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common data base is the subject's psychological field, and we hope that

our synthesis takes account of as much of this field as possible, whilst

processing in the most relevant way. This of course is a philosophical

view of the project, and we cannot expect total success, but it gives us a

background against wnich to work. The procedure developed in Section 5.0

may be viewed as a first attempt at quantifyi.ng this concept.

3.7 Expert Use

There has been a number of methods suggested in the past for dealing with

the expert use problem. This is the case of a decision maker who is using

experts to help improve his/her decisions. If we have two experts, each

assigning different probabilities to the same event, the DM is faced with

an inconsistency which must be reconciled in order to arrive at his/her

own probabilities. Since this problem has been extensively addressed, it

is a natural place to commence our search for a procedure for RIJ.

The Bayesian updating approach of LTB is an adaptation of the methodology

proposed by Morris (1974) to deal with expert use. To permit the use of

the methodology for a single DM, the authors of LTB are forced to

postulate a hypothetical division of the DM, into an expert and a user.

The main difficulty with this hypothesis is that some of the concepts

which make snse when there truly are different people involved, do not

make sense when we have only a single DM, Morris states "the key idea (of

his work) wcs the distinction between the meaning of an expert's

probability assessment to the DM and to the expert himself: to the

expert, the probability assessment is a representation of his state of

information, to the DM, the probability assessment is information." it is
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hard, if not impossible, for an individual to think of his/her own

assessments as new information, separate from his/her previous state of

information. It is this difficulty, presumably, that led to the

assumption of the existence of '1.

Similarly, the work of Mitroff et al. (1970), which uses the dialectical

IS as a basis, addresses the problem of expert use. Again, the specific

methods they postulate for quantification of their ideas, do not really

carry through to the case where our two "experts" are an hypothetical

construct. Such analogies with the expert use problem can provide a

useful way to thinking about RIJ, and have undoubtedly been valuable in

formulating an initial approach to the problem, However, it is only an

analogy, and we should be sure that the analogy holds in any particular

situation in which a reconciliation is necessary.

3.8 Summary of the Different Aproaches Identified for RIJ, and

their Rationales

In this section, we give a brief summary of each of the different

approaches so far identified as being potentially useful for RIJ. The

emphasis here is on the perspective of the problem underpinning each

approach, and the way this has been translated into a quantitative tool.

The similarities and differences of each approach are highlighted.

3.8.1 Bayesian updating. This is the approach already described, as in

LTB. It is essentially a "measurement error" approach, and is based on

the concept that a probability assessor is attempting to discover hi"/her

"true probability," 71 , and that this is best achieved by taking several
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different "readings" on iT , each subject to random error. iTmay be

interpreted merely as a parameter (see earlier) but this rationale remains

--r needs some intuitive meaning.

3.8.2 Least squares. This procedure is developed in LTB as an

approximation to the internal approach of Bayesian updating. The basic

idea is to discover i , our "best" estimates of 7r , by finding the

solution to

Minimize (3 - !)tW(q - 7T)

subject to the coherence constraints. The qi and 7i may be transformed

here, to log-odds, for example. The weights wij are defined in LTB as the

elements of the inverse of the variance matrix of qi, but alternative

definitions are possible, and these are considered in Section 5.0. The

basic idea of this approach is one of either "confidence" or "stability."
A

By confidence we mean that our reconciled vector, T, should be as similar

as possible to q, with the qi in which the subject has least confidence,

changing the most. Alternatively, we may view this as a way of modeling

the informal "jiggling" of the elicited values that a subject would

perform if asked to reconcile the numbers, without aid. The reconciled

vector, 7, would then represent that coherent set of values with which the

subject felt most "comfortable," or which required the least "mental

anguish" in order to adjust the elicited qi.

3.8.3 "Information" approach. This approach is a heuristic developed as

an approximation to the Bayesian approach, and is described in Section

5.0. Although this approach is not fully developed, we feel it is most

likely to prove useful in reconciliation. It is based on an alternative
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conception of what is truly underlying the least-squares approach. This

is that we really wish to take a weighted average of our different

elicited values for the target probabilities, with the weights being

determined by the amount of "information" contained in each assessment -

that with most information having largest weight, etc. Here information

is being used to include a) parts of the subject's internal cognitive

field, or data base, and b) different ways of processing this data so as

to produce probabilities. This idea is based on the observation, made in

LTB and extended in Section 5.0 of the present paper, that the

least-squares approach actually produces a weighted average, and that the

weights may be interpreted as representing information, but that this is

achieved in a very round-about manner. The present approach improves on

this.

The technique can also be viewed as arising from the dialectical inquiring

system ideas discussed in Section 3.7--the underlying rationale of this

approach is that the inconsistencies arise from considering different

models of S's uncertainty with each assessment, and that the "best"

assessment is that which considers all the possible models.

3.8.4 Alternative simple techniques. The information approach discussed

in the previous subsection assumes that there are no consistent biases in

the values elicited. If we have a good reason to believe that such biases

are indeed present, then some other technique should be used first, before

submitting the data to the information approach. This leads to the

concept of developing several different reconciliation techniques, each

simple, and each designed to address one (or more) of the possible sources

of incoherence identified and discussed in von Winterfeldt (1980). In
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this way one can envisage, for a given reconciliation problem, using those

techniques from our selection which appear most appropriate. One of these

techniques would b3 simply to ask the subject to reconcile the numbers

informally, if such appeared appropriate. Another would be to use a form

of "satisficing," rather than optimizing. With this concept, one would

present different possible sets of reconciled values to the subject until

one was presented which was considered the most acceptable. In this way,

whilst not necessarily finding a "best" estimate, we find one that is

"good enough," without entering into any mathematics. This idea is

further discussed in Section 6.0, as are other simple techniques.

3.8.5 Fuzzy set theory. This technique of extending the underlying

axiomatic system is not discussed any further in this paper, but is

developed in Watson et al. (1979) and Freeling (1980b), and discussed with

espenial reference to the incoherence problem in Freeling (1980a).
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4.0 THE LEAST-SQUARES APPROACH

4.1 Introduction

LTB, aware of the practical difficulties of the Bayesian approach, suggest

the least-squares procedure as an approximation to tha internal approach,

which avoids most of the assessment difficulties posed by the assumption
A

of I. They propose to take n as the solution to the following

constrained minimization problem:

Kinimize E wij (qi - ri) (qj - Tj) (4.1)

i.j
subject to the coherence constraints f(T) - 0. Or, in full vector

notation, minimize (q - 7t W (q - ).

LTB take W - V-1 , where V is the variance-covariance matrix of the q'u.
So, for example, if the qi are independent, with variances a .2, the

1

function to be minimized is

. (q - i) 2.
ii

With this definition of the weights, wij, and under the assumption that

p(qlu) will be multivariate normal with mean r, and variance independent

of Tr, and that N's prior beliefs aboutiT are diffuse, so that p( 7n) is

approximately constant, the solution to (4.1) is a good approximation to

the internal approach. This is the motivation for developing the

least-squares ideas.

4.2 The Choice of Metric

It will be noted that the normality assumption is far more reasonable if

we are working with log-odds, which can take all values in ( - , ),
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rather than with probabilities which are constrained to the interval

(0,1), since the normal distribution has an infinite range. The

assumption of equal variance over all possible r. does not make sense,

working with probabilities, as for qi close to 0 or I we may expect the

absolute variance to be small. Such a consideration does not hold true

when using log-odds. For some psycholgical work which lends support to

this theory see Wheeler and Edwards (1975). In this chapter we examine

the computational consequences of these assumptions, and look at possible

choices for the W matrix, together with justifications of these choices.

Using log-odds (1o) clearly makes sense, but as we shall see, it also

dramatically increases the difficulty of implementing the technique, as we

are now faced with quite a complex constrained non-linear optimization

problem, which, at best, is soluble only with a sophisticated computerized

optimization package. However, there are some potential simplification

techniques we now mention.

(If we are interested in assessments solely of the target variable, so

that all tie qi are intended to represent the same probability, our

constraint is u1= 72= ... = un, and this is unaltered working with

ri= lo ui. In this case, then, we are still faced with a quadratic

optimization problem with simple linear constraints, and this situation

can be easily handled (see next section). With any other constraints,

however, the form of the constraints is made more complex by transforming

to log-odds: e.g. W1= 2k + w3 (I-k) becomes a very nasty expression if we

work with rif 1o Ijt.)
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Let ri- lo qi and pi= lo vi. Then we wish to minimize (r - p)tW(r - P)

over all pER n, subject to f() -0. By Taylor's theorem, however, we see

that (qiT )

(riPi) = , since ---- (ln(x/l-x)) =
S qi (1 - qi)' dx x(l-x)

So if we set
v. = and u.. mmw. i,j,

we see that
S(r i  i Wi (rj-p) -  (qi IT Mi) wi m (qi -ITe

1 ij j 1

t
- (q-iT) U (q-T).

So we have reduced our non-liniar optimization problem to a constrained

optimization problem with a quadratic objective function. Whit we have in

fact done is to approximate the log-odds metric on R n by the best

Euclidean metric at the assessed q. An idea of the magnitude of the error

of the approximation can be gained by looking at the next term in the

Taylor expansion of lo x. This is

2 (2q-l)
S(q. i) 1

1~ i 2 2
q1 (1-q~

which is small if qi is near 0.5, or if Ii is close to qi• This conforms

with our intuition that log-odds will only give radically different

answers if the probabilities involved are extreme, and that we only run

into problems if there is a large degree of incoherence. In fact, in all

examples tested, the approximation gave satisfactory answers. We

therefore suggest that this approach ohould be used, for, as we shall see,

the computation is relatively straight-forward with a quadratic objective

function.
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4.3 The Linear Model

It may not at first glance be apparent that the least-squares procedure

discussed here is in fact equivalent to the well known statistical

procedure of least squares used in finding the parameters of a linear

model, for example with analyiis of variance (see e.g., Scheffe, 1959).

The constraints may appear unfamiliar. However, in some cases our problem

is in precisely that form, and hence the analysis of the linear model can

be used.

The general linear model takes the form:

q = A w + e E(E) = 0

Var(s) = V

where A and V are matrices.

Suppose we are dealing with n different estimates of a target probability.

Then we may state our problem as

q 2

=1+E. So here A

q n

Alternatively, if we have assessments for an event X and for its

complement -X, then we may transform q2 = q(-X) to x2 = q2 -1 and then we

have

so here A (
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Again, if we have the constraint W = T2 k + 73 (1-k)

we have

q2 = E 0 3 + +

q 0 1

So A= 1

Then the solution of this problem is well known, being

T (AtV- A)- AtV q and VarM -(AtV-A)

With the aid of a computer, this can be easily calculated. With more

complex, non-linear constraints the linear model is not applicable,

however, but we may use the powerful mathematical tools made available to

us by Lagrangian theory. In the next section we exemplify the use of this

concept with fully worked out examples in the linear case.

4.4 Use Of The Lagrangian

The first thing that should be noted is that it is due to the constraints

that we cannot perform the optimization simply by differentiating the

objective function and setting it to 0, for differentiating

(q-7r)tW(q-7) with respect to q gives

2 (q-) tw.

But this can never equal 0, for W is of necessity positive-definite2 , so

it has an inverse. Thus
2qgtw = =)q t -i -i )t

2(q-7t W = 0 (q-T) tw w = 0.w = 04 (q-T) = 0)q = 71
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and this is not possible if q was incoherent. Instead, with a quadratic

objective function, and the fairly simple constraints usually present we

can use the concept of the Lagrangian function to discover an analytical

solution. We shall consider two cases to exemplify the method.

1) A Partition

Suppose we have assessed the probabilities of a partition Ai, so that our

required constraint is E 1.

Then to reconcile our incoherent q's we wish to minimize

, (i. - q) w.j (,j - qj) subject to i i = 1.

Form the Lagrangian

L =.. ( - qi) wij (1Ij - qj) - A(.r w - 1).

Differentiate with respect to T , and set to 0:

= 2 Z ji - qi) w.. -j .2i 2 j '.

Suppose W- 1 - V.

Then we can multiply the above expression by V, to give

2r =Xq +  Zv
k V jk -2 j jk"

It now remains to find X, which is done by using the constraint n i 1.
k k

so V =>X=2 (1-Zcj) - ( V
qk 2 k j jk >kK k) vjk)
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Then

k qk+ (l11 q k) E~j V j vk)

Note that if we define W as the inverse of the variance-covariance matrix,

these Vjk are simply the variances and covariances. This means that we

never have to perform the inversion of the matrix, and thus the

computation is simplified.

As a special case, if all the correlations are taken to be zero, so that
2

we are minimizing I wi(qi-,i) subject to the constraints, our expression

reduces to:

q , + ( i-Eq w

which is equation 16 of LTB.

2) External conditioning

Suppose we have made two assessments of a target variable--one holistic

and the other via decomposed estimates conditioned on an external event of

known probability k. Then our constraint is

= 2 k + 33(1-k)

where the notation should be clear.

Proceeding as before,

L t
L = (Tr-q) W (-q) Or (il-kT2 - (1-k) 3T)

1 12 3

L 2(r- q)t W - 11 -k k-i],
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and

(T - q) [1 -k k-l]W

If W is the variance-covariance matrix

C2  PaT pa 1  (4.2)
PUT T2  6T2j

2 2LPar 6T T

where we assume q and q have the same statistical structure, (so that 02

is Var q' T2= Var q2= Var q3  p is the correlation between q and q2 ' and 6

that between q and q3 "
2  3

we have (7T-q) t POT - kT2+kST2- 6t 2

PoT - k6r 2 + kT 2 - T

and again we find A by substituting ft into the constraint function,

giving

q1-kq2 - (l-k)q3
(kz-l)6Tr-2kzTz + 2kT'-T' + 2paT -6'

We see that already the expressions are very complicated, and in the more

complex situations, an analytical solution cannot be found. For,

although the Lagrangian ideas exemplified in this section are still

4-8



3L
applicable, the expression = 0 has no analytical solution with

most non-linear objective functions.

4.5 A Procedure for Optimizing in the Log-odds Metric

When working with log-odds we are forced to use numerical techniques and a

computer. Constrained non-linear optimization problems are in general

hard to solve, but in most cases we shall be able to exploit a special

structure in order to change our problem into an unconstrained one, which

will be more tractable.

This is achieved simply by substituting from the constraints into the

objective function. This makes the objective function more complicated,

but in most cases with probability constraints this increase in complexity

is minimal, and the saving in computation obtained by removing the

constraints is well worth it. As an example, suppose we have external

conditioning; then we must minimize:

3
i j=l (lo qi - lo ri) wij (I0 ci - lo 1 .)

subject to Ti = kT2 + (1-c) r3

Then whenever ITI appears we substitute kn2 + (l-k)T3 for it, thus elim-

inating the constraint and simultaneously reducinq the dimensionality of

the problem. This is another attractive feature of this approach.

The resulting unconstrained problem can be solved using a method such as

conjugate gradients, which is well adapted to this type of problem, being

both robust and efficient. However, a lot of work is required for the

programming. We therefore suggest always approximating the log-odds metric by a
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Euclidean one, if at all possible, as described in section 4.2. However, the

observations of the next section may be used to simplify the computation.

4.6 A Practical Example of the methodology

To exemplify the method, consider again the Oxford and Cambridge boat

race. Then A, the target event, is "Oxford wins" and take X to be "Oxford

wins the toss." Then qj = q(A) - 0.7; q2 = q(Aj X) - 0.8; q3 = q(AI-x) 

0.5, and we will assume that P(X) is known to be 0.5. Then, in general, the

matrix will take the form of (4.2). Then if we assume that all the assess-
2 2

ments q are independent and have equal variance, so a = T = 1, p - = 0,

and W becomes the identity matrix, we find that W = 0.67 is the reconciled~ 1

value. Furthermore, if we define precision as the inverse of the variance,

as is often done, we find that the precision of f is three times that of the

original assessments. This calculation appears in LTB, where it is used to

indicate the dramatic increase in precision achieved by taking multiple as-

sessments and reconciling them. There are several caveats about this pro-

cedure which should be considered. These are discussed in the next section.

4.7 The Importance of Correlations

I now wish to show that the results of LTB in fact arise largely from the

assumptions of independence among assessments. Indeed, the increase in

precision by a multiple of three is directly attributable to this

assumption, as may be understood from the following heuristic argument.

Precision as here defined is closely related to the statistical concept of
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the amount of information described by an assessment. Also, independence

among assessments is equivalent to saying that each donates entirely

different information to the reconciliation. Hence, with three

independent assessments, we have thrice the information, and equivalently,

thrice the precision.

Such an analysis interpreting the quality of assessments in terms of their

information content has a very intuitive appeal. It was after all an

attempt to consider all the possible available information (in the form of

searching the assessor's psychological field) that prompted this search

for incoherence. However, the assumption of independence among

assessments is clearly untenable. For much of the same information will

be used in assessments directed towards the same target variable (e.g.,

q(A) and q(AIX). Alternatively, looking at the same situation from a

different angle, if q(A) is overestimated we might well expect q(Al X) to

be overestimated as well, since S might make the same mistake in each

case, so the correlation would be non-zero.

LTB are aware of the falsehood of the independence assumption, and the

effect this has on precision. They extend the previous example, in a

calculation to be found in an earlier draft of LTB (Lindley, Tversky and

Brown, 1978), by taking 02 = T2 = 1, p = 6 0.5. The calculations

again give 0.67 as the reconciled value, but the precision is only

increased by a half.

However, LTB appear to ignore this fact when making one of the major

conclusions of their paper. For they conclude that the following
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procedure is a good one for increasing precision. Find a partition

Xi (i = I,..., n) of the sample space, such that P(Xi) = P(Xj) for all i,j

(where these probabilities are assumed known, e.g., as, perhaps, with a

coin toss). Then "extend the conversation about A" to include Xi, by

assessing q(AIX i ) i = 1,...,n. Then we have two assessments of the

target variable P(A), in a direct, holistic assessment q(A), and an

indirect decomposed assessment q(AIX i ) P(Xi). These should be

reconciled via the least-squares procedure.

LTB show that under the assumption that all assessments-are independent

and of equal variance, this procedure gives an increase in precision by a

factor of n+l, and that using an equiprobable partition is optimal over

all partitions of size n. They then suggest that we should thus always

try to extend the conversation to include such an equiprobable partition.

When correlations are included, this conclusion no longer holds true.

(Indeed, we can see that precision is maximized by utilizing as much

information as possible. This concept is made more explicit in a later

section.) To take an absurd example, suppose in the boat race example,

that I decide to condition not on the relevant coin toss, but on a coin I

toss. Then the analysis would be identical to the real case if

correlations are ignored, yet clearly there should be no increase in

precision by considering irrelevant events. The point is that q(A),

q(AIX) and q (AI-X) should all be very similar, as they are really the

same assessment, and so the correlations are very high.

LTB also state that correlations "have little effect on the

probabilities," noting that in each of the above examples, the reconciled
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value was 0.67. They assume that the correlations affect only the

precisions, not the values. This is untrue, as can be seen by once again

altering the variance-covariance matrix of the previous example. With

02 = 4, T2 = 1, p = 6 = 0.5, we find that the reconciled value is 0.645.

This is a reconciliation of 0.65 and 0.7 which is different from 0.67, and

perhaps somewhat counter-intuitive. This is due to the fact that

describing the relationship between assessments by correlations is

difficult and not very intuitive. Whereas one can assess variances fairly

well by asking for credible intervals for an assessment, assessing correla-

tion coefficients is not so easy. With the boat race example, the author

was not able even to produce a variance-covariance matrix for his own

assessments which was positive definite. He thus has very little faith in

direct methods of assessment for correlation coefficients. As these

correlations have been shown in this section to be of paramount importance

to the least-squares technique, we now proceed to look at alternative ways

of interpreting the relationships causing non-zero correlations, and thus

making indirect assessments of correlation coefficients.
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5.0 ALTERNATIVE INTERPRETATIONS OF THE LEAST-SQUARES PROCEDURE

5.1' A Psychological Interpretation of the Metric

The expression (4.1) is an example of a generalized distance, or metric.

The matrix W transforms the familiar Euclidean space in to a curvilinear

space. In this section we interpret this curvilinear space as being the

psychological field of the assessor, with respect to his/her assessments.

So, if q is the assessed probability vector, and xi (i - 1,..., m) are

other possible probability vectors, then that xi minimizing

(qx j (q - x ) is the closest xi to q in this psychological space.

An intuitive understanding of this distance is to consider it as measuring

the unease of S at being forced to take some vector other than q as the

probability vector. So the solution to (4.1) is that probability vector

which satisfies the coherence constraints, which S is least unhappy using

as hii/her probability vector. This then gives us an alternative method for

assessing the distance matrix W. If we can discover S's perceived

distances between different points, we may then deduce the W these

distances imply.

Such a program appears very attractive. It does not depend on the

assumption of hypothetical true probabilities and its definition of the

"best" reconciliation is totally subjective, in the spirit of the theory

of subjective probability. However, on a further examination, the method

appears unworkable. This can be exemplified by a thought experiment.

If such a metric existed, one would be able to use the methods of multi-

dimensional scaling (MDS) to find it. To take a concrete example, suppose
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S assesses q1 (A) = 0.5 and q2 (A) = 0.4, so q = (0.5, 0.4) revealing

incoherence. Suppose the analyst selected x = (0.5 0.5) and x =

(0.6 0.4) for presentation to S. Using MDS we would require S to

answer questions of the form:

1 2.a) Which of x or x is closer to q?
12

b) Which of x orgq is closer to x2?

1 2
Question a) is answerable, but question b) is not. Both x and x are

vectors invented by the analyst, and S may well find it impossible to

2assess his/her feelings of discomfort at being forced to move from x as

his/her probability. The mental gymnastics required are too difficult.

In fact, we see that the only feelings of discomfort S truly has concern

imoving from q to the various x , but not moving between any two points,

arbitrarily selected by the analyst. In this case there exists no matrix

W with the interpretation of this section. (For, if there were, question

b) would be answerable.) It is possible that some other method of using

this interpretation of the metric may yield better fruit, bet for the

moment we are forced to look elsewhere for a practical and satisfactory

reconciliation procedure.

5.2 Least Squares and a Weighted Average

For the rest of this section we concentrate on two estimates of the target

variable, p(A). So q1 may be a holistic assessment, and q2 the assessment

logically implied by decomposed judgments. Hence from now on the co-

herence constraints take the form ql = q2 " We also assume that we are

working in log-odds, for the reasons noted in Section 4.

If we use the least squares approach, with V equal to
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then the reconciled value is

(2 + C2(T-p +T)q ( POT)q 2  (5.1)

T 2 + G2 - 2 OUT

(This is a consequence of the general result stated in 4.3, that

= (AtV 1A)- AtV- q

In this case A (1 1), and the substitution easily gives equation 5.1).

Note that * is simply a weighted average of ql and q

= (Aql + Bq2)/(A + B) (5.2)

with A = 1/0 - P/OT, B = l/T2 - P/CT, though one of the weights may

be negative. These weights have an appealing intuitive interpretation.

For example 1/12 may be taken as a measure of how "good" an assessment q

is and may be viewed as a measure of the amount of information contained

in q1, so A is the amount of information in q1 reduced by a quantity due

to the correlation. In the next section we interpret this quantity as the

amount of information shared by both q1 and q2 "

It is appropriate to note here that (5.1) can also be derived in a

different way. We may decide a priori to make our reconciled value a

weighted average of the two elicited target probabilities. In this case,

since our motivation is to increase precision, which we may equate with

reducing variance, we wish to seek the minimum-variance weighted average.
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Then it is easy to show that the optimal weights are as in (5.1). For,

assuming f kqj + (1-k)q 2, we find that the variance of * becomes

k + (1-k) ZT2 + 2k(l-k)paor

Then differentiating with respect to k and setting to 0, we find k=A/(A+B)

as defined above. This idea is discuiised by Bunn (1978), with regard to

pooling the results of different forecasting models. It provides an

alternative motivation for using this approach, which may be more

acceptable to some. We can also see from this interpretation of the

least-squares technique that there is an underlying assumption that our

elicited values are unbiased estimators, (i.e. that the error of q is

expectationally zero; so E (qjW ) -w ). For, were this assumption false, f

would not be an unbiased estimator, so E (ftlq ) + I 4 a, where a is

non-zero, and a better estimate would be ft - a. The implications of this

assumption are discussed later.

5.3 An Information Oriented Approach

in this section we argue that the least-squares approach is ini fact an

attempt to quantify the information (in the broad sense discussed in 3.8)

captured by an assessment, and to perform the reconciliation based on this

quantification. Consider Figure 3. This diagram illustrates the

information accessed by our two (log-odds) assessments qj and q2 - So qj

has information lIl and q2 has informationll 2 1
3. Then A = 111/121

quantifies the information accessed only by qj, B = 112/Ill quantifies the

information accessed only by q2 , and C =IIi () 121quantifies the

information common to both qj and q2 " In this formulation, the total

amount of information is II1 U 121 = A + B + C.
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FIGURE 3

INFORMATION OVERLAP BETWEEN 2 ASSESSMENTS

2

A=O

FIGURE 4
ALL THE INFORMATION OF 1 CONTAINED IN 2
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A formal definition of "information" is really necessary in order to fully

operationalize and quantify the concept. Such a definition is unfortunate-

ly very hard to produce.

However, there are two aspects of information; the degree to which S has

been able to dip into his/her psychological field, and the extent to which

that gleaned data has been correctly processed in accordance with Bayesian

principles. The first aspect has the intuitive meaning of describing what

of relevance tn the target event was taken into consideration when making

the assessment. The second refers to the ability of human beings

adequately to process data; which, from the psychological evidence, is

limited. I believe these concepts can be further explored and made ex-

plicit, but for now we must trust our intuition that such concepts have

meaning.

We now have a model which is able to describe simply both our motivation

for studying incoherence, and the weights that are "optimal" when using a

weighted average. First, by eliciting both qj and q2, we have obtained

more information from S than if we had only elicited one of them. It must

be better to take account of all this information if possible, rather than

usirng just some of it by using only one assessment of p(A). The increase

in quality of our result is measured by the additionil information used.

Second, an intuitively reasonable way of weighting the two assessments is

in proportion to the information unique to them, the information common to

both tipping the scales in favor of neither one nor the other. This then

makes the natural reconciliation to use (Aql + Bq2 )/(A + B), as in the

previous section.
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This intuitive procedure has an obvious correspondence to the least

squares procedure. lil corresponds with 1/02, 1121 with 1/T2, andlI1lI 21 with

p/OT. In particular, this provides a clear interpretation of the

correlation coefficient, p, in this context. The two assessments are

related to the extent that they each draw on the same information. I

believe that it is this relationship we are attempting to quantify by

including p in our analysis. However, quantifying the relationship in

terms of information content is a more natural way of proceeding, as P is

a non-intuitive entity. This explains both the difficulty involved in

assessing a p that is coherent, and also the potential for unexpected (and

unsatisfactory) reconciliations which arise from using a P which does not

correctly capture one's belief.

As an example of the value of these information ideas, consider the

classical situation, such as the boat race example, where ql is a holis-

tic assessment, and q2 a decomposed one. Then the assumption (often

unspoken) of decision analysts has been that q2 captures all the

information of qj, and some extra as well (i.e. it is assumed that by

decomposing the judgment we are able to take some aspects of the situation

into account that previously we could not; and also that there has been an

improvement in processing of the data by making explicit use of the

equation p(A) = Z p(AI Xi)p(Xi) ). Analysts will therefore often not

bother with eliciting qj at all--it would not appear to have anything to

offer. In the present formulation, the above argument means that I1 12

(see: Figure 4) so that A = 0. Hence the weighted average (5.2) becomes

Bq2/B = q2 , confirming the heuristic reasoning above.
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With the least-squares formulation however, to achieve such a reconcilia-

tion, we see from (5.1) that pmust equal T/G. I very much doubt that

such a value would be elicited from a subject who actually held the above

beliefs. This example also makes explicit once again our motivation for

seeking incoherence--if we do not agree with the above reasoning, but in

fact believe that 11/12 0, then we gain by considering both q1 and q2"

Another interesting consequence of the present formulation lies in the

correct value of p to use in a statistical analysis when one has no infor-

mation about its value. Lindley (1965) has suggested P = 0.5 is

appropriate. From Figure 3, one could invoke a form of the principle of

insufficient reason, and take A = B = C. In this case one can easily

calculate the implied value of p to be 0.5,

5.4 Assessments

The concepts of "information" discussed above have a fairly intuitive

interpretation, but it is rather difficult to obtain quantitative

assessments for them. In this section we make some suggestions for

quantification.

The first item to note is that if we have equal confidence in each of q,

and q2, then we know that A + C = B + C, so A = B, and we may simply take

the arithmetic mean of (log-odds) q, and q2. This illustrates the point

that a quantification of C is of use only in assessing the precision of

the reconciled estimate, and also that we can arbitrarily assign one of

the values, e.g., A, as it is only relative quantities in which we are

interested. It should also be noted that this explains the findings of
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LTB (see Section 4.7) that correlations will not affect the probabilities.

For, their calculations were performed with a 2 = T2, or A = B, and as we

have noted, this then eliminates the effect of the correlation.

There is a standard statistical concept upon which we may draw, to aid our

understanding of information, that of Fisher's information, but while such

a concept is of value in providing a theoretical basis for the work, it

does not aid the practical problem of assessment. Perhaps a more

promising line of research would be to 6xplore the use of Shannon and

Weaver's information measure (Shannon and Weaver, 1949), but we have not

had the opportunity to pursue this very far. The following suggestions

are only tentative, and further work is necessary to extend some of the

ideas.

One could simply assign the weights for the weighted average directly,

without explicitly considering the information content. This and any

other such attempt at quantification will need to be an interactive

process between the analyst and S, so as to capture the subjective feel-

ings of S and the more objective knowledge the analyst has about the

different assessment techniques.

A more satisfying method of direct elicitation is to use the intuitive

idea of information, and ask the following two questions:

a) How much extra information was gleaned by taking q 2,

when q 1 had already been assessed?

5-9



b) How much extra information would have been gleaned by

assessing q1, had q2 already been assessed?

Each of these answers should be made relative to the amount of information

contained in q1. To exemplify the way A, B, and C could be calculated

from these answers, suppose the answer to a) was "as much again" and to b)

"half as much again." Then we deduce that:

B =A + C (from a)

and 2A = (B + C) (from b).

Hence A = 2C = 2B/3. So the weighted average is 0.4qj + 0.6q2, and the

precision of the reconciled estimate measured by A + B + C is twice that

of q1 and one and a half times that of q2"

One might instead suggest that the weight should be related directly to

the confidence placed in the judgments. This is related to the accuracy

we believe to be associated with each assessment--those in which we place

greater confidence are those we consider to be more accurate. Again there

appears to be no satisfactory definition at present allowing a quan-

tification of what is nevertheless an intuitive concept. We could

envisage using some psychological measurement procedures to permit such a

quantification; perhaps allowing us to translate concepts such as "very

confident" into an ordinal scale. If we have, for example, certain

amounts of confidence in each of two assessments, it is likely that some

of the reasons for our confidence are common to each. In that case, we

shall say that the confidence arising from those reasons lies in the

intersection of our Venn diagram (Figure 3.) Note that we are imDlicitly
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using this "confidence" as a surrogate measure for the reasons of our

uncertainty in our assessments. The use of some such surrogate measure

appears to be the best way of proceeding, and is common to all our

suggested reconciliation techniques.

In terms of actually making these assessments of confidence, we envisage

displaying Figure 3 to S, and asking for an allocation of 100 coins between

areas A, B and C, in proportion to his/her confidence judgments. We would

then use these, judgments to perform our calculations in the same manner as

that discussed above.

Alternatively, one might use the concept of equivalent sample size to

assess the information content of an assessment, by relating the extra

information gained from an assessment to the number cf extra observations

from a binomial process that would have provided equivalent gain in infor-

mation. Bunn (1978) has discussed ways of using this idea for assessing

the parameters of a beta distribution, and an extension of those ideas

might provide a good method of dealing with the present situation.

One could also use the ideas of LTB to help decide upon the weights--by

assessing credible intervals for each assessment, we gain a good idea of

the relative degrees of confidence in each assessment. The variance of an

assessment may be taken as proportional to the square of the confidence

interval. Assessing the information common to the two assessments is not

so easy this way.
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5.5 Expert Use

In this section we have discussed the situation of a single decision maker

who gives inconsistent probability assessments. However, the technique of

taking a weighted average of log-odds Js also applicable to the problem of

expert use, i.e. the situation when two or more experts each give

probability assessments for a target variable. One would expect the

experts to differ somewhat in their probability assessments so, in order

for a decision-maker to make explicit use of the assessments, a reconcilia-

tion needs to be performed. Morris (1974) has developed a Bayesian proce-

dure for performing this reconciliation that is similar to the method of

LTB. The argument we have presented in previous sections can be used to

show that the reconciliation should be a weighted average of log-odds. In

this case the interpretation of the weights is much easier than before;

they are the decision-maker's opinion of the relative expertise of the

various experts. So, for example, the intersection 110 12 represents the

shared expertise.

We are now in a position to offer an interesting perspective on the well

known problem of what reconciliation to use for multiple experts of equal

expertise. The arithmetic mean of the probabilities is an obvious

candidate, but Norman Dalkey 4 has suggested that the geometric mean is

better than the arithmetic mean. From our work we can conclude that the

arithmetic mean of the log-odds is the appropriate procedure. It will be

recalled that log-odds were suggested because the assumption of normality

necessary for the least-squares procedure was more valid.
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We make the observation that taking the geometric mean is equivalent to

taking the arithmetic mean of the log-probabilities. For, if the recon-

ciliation q= (qjq2) , and letting r, = in Pl, r2 
= in P2, then

r in q' = 0.5(r1 + r2). Thus taking the geometric mean would be our

recommended procedure if we believed log-probabilities to be normally

distributed. Such an assumption may be better than taking probabilities

as normal since log-probabilities have infinite range, but log-

probabilities are always non-positive, so the normality assumption can not

be strictly true. Our work thus implies that taking the geometric mean is

better than taking the arithmetric mean, in agreement with Dalkey, but

that taking the mean of log-odds is better than either.

5-13



6.0 ALTERNATIVE RECONCILIATION TECHNIQUES

6.1 Psychological Biases

There has been a lot of work reported in the psychological literature aimed

at discovering how good people actually are as probability assessors (e.g.,

Tversky and Kahneman, 1974). These studies have identified various biases

in assessments, and have typically attempted to explain these biases be-

haviorally. If one has particular reason to believe, in a given situation,

that one of these biases or heuristics is causing inconsistency, it makes

sense to find a reconciliation methodology that addresses that particular

bias. For example, if it appears that a subject is poorly calibrated, then

using a calibration curve makes sense (see Lichtenstein, Fischhoff, and

Phillips, 1977). It is only after all the apparent biases have been elim-

inated, yet we are still left with inconsistency, that the procedures dis-

cussed in previous sections should be applied.

We thus have come to the concept of developing several different recon-

ciliation techniques, each, we hope, fairly simple and each designed to

address one or more of the possible sources of incoherence. For a given

reconciliation problem, we would use those techniques in our package which

appeared most appropriate.

As an example of one such technique, suppose we have reason to believe

that the only error being made by a subject is that he/she always over-

(or under-) estimates probabilities. We might then assume that he/she is

in fact operating with the numbers he/she produces according to the probability

calculus, except that he/she is mistaking the first axiom of probability (that
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P(P) = 1, where Q is the complete sample space) and instead of using P(Q)

= U, a 1 1. If a > 1 he/she is being optimistic and if a < 1 he/she is being

pessimistic. It is then easy to show that his/her assessment of the proba-

bility of an event X, q(X), will simply be P(X) multiplied by a factor a.

In different situations we shall have different ways of discovering a--

the simplest is when he/she assesses q(X) and q(~X), for then we may simply

divide by their sum. This then provides a justification for using an in-

tuitive technique, as proposed by Bartholomew in the discussion to LTB.

6.2 Satisficing

The techniques so far discussed have all been attempts at optimizing--we

have in each case been attempting to discover the "best" reconciliation,

r, although we have used differing interpretations of what is best. How-

ever there is a fundamentally different way of approaching the whole problem,

which may be likened to the concept of satisficing in economics. Instead

of attempting to find the best reconciliation, we could simply look for one

that is "good enough." The simplest way of doing this would be to inform

the subject that he/she had been incoherent and then to present to him/her

various coherent sets of values until he/she accepted one as being sufficiently

descriptive of his/her true feelings of uncertainty.

This is probably not too different from what occurs at the present time if

incoherence is discovered. One could visualize an interactive computer

program which elicited the probabilities in various different ways,

analyzed the responses for inconsistencies, and then presented a range of
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potential reconciled values for the subject's consideration. It would be

interesting to see if a reconciliation produced in this way in fact per-

formed any worse in decision-making contexts than our optimizing techniques.

6.3 Degree of Incoherence

Another totally different approach to this problem would be achieved if

some measure for the degree of incoherence could be developed. In the

methodologies of the previous chapters, we have assumed that after the

initial inconsistency has been discovered, we shall look only at vectors

on the constraint set, and select our reconciled value through a search

amongst these. One could have taken the alternative perspective of in-

forming S that he/she has been incoherent, and giving him/her some indi-

cation of how incoherent, and perhaps in which directions his/her values

should change to reach the constraint set. S would then produce a new set

of values, which we could once again inspect, and tell him/her how incoherent-,

etc. this new vector was. In this way we could arrive at a sort of hill-

climbing algorithm, where we would attempt to minimize the degree of inco-

herence (to a level of 0), by repeatedly trying different points.

At present we have no adequate measure of incoherence--it is unclear to

what extent an objective measure could be produced. However some form oG

entropy measure might well be appropriate here. A more serious difficulty

arises with the actual hill-climbing algorithm. We cannot be certain that

S will in fact produce successive values that reduce incoherence, i.e.,

the algorithm might not converge. It is also possible that we might

encounter the phenomenon of jamming, or of reaching a limit that was
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suboptimal, as often occurs with hill-climbing algorithms. Another

difficulty might be the motivation of S. He/she might get frustrated if

repeatedly told to try again with another set of values, unless he/she

could perceive that convergence to zero incoherence was fairly rapid.

However the method might be successful, and it would certainly be an in-

teresting experiment to try. Development of a measure for incoherence would

be especially useful.

6-4
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7.0 SUMMARY AND CONCLUSIONS

In this paper we have examined in detail the work of Lindley, Tversky and

Brown, and further explored some of the consequences of that work. We

have concluded that taking a weighted average of log-odds, with the

weights proportional to the independent information iontent of each

assessment, is equivalent to the procedure developed by LTB, while being

simpler and of greater intuitive appeal.

The procedure of taking a weighted average may smack somewhat of

"adhockery," but it should be clearly understood that it has been derived

as an approximation to a complete Bayesian analysis. A comment of de

Finetti (1974) is qproprat. here. The use of "adhockeries" "may

sometimes be an acceptable substitute for a more systematic approach

onl, if--and in so far as--such a method is justifiable as an approximate

version of the correct (i.e. Bayesian) approach. (Then it is no longer a

mere "adhockery.") '

It is hoped that we have adequately demonstrated in this paper that the

procedure of using a weighted average of log-odds to reconcile

inconsistent assessments is sufficiently simple to apply, and the

justification for seeking out incoherence in order to increase the amount

of information used sufficiently compelling, for this strategy to become a

starnJard and useful part of the decision analyst's armory.
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Footnotes

I. There is however a very strong case for arguing that we must always

use our own beliefs to determine someone else's meaning. In this case,

one could view a reconciliation procedure as part of the analyst's model

for interpreting S's statements, and it would then be appropriate to take

the analyst as N. In the traditional view of decision-analysis, the

analyst is portrayed as a logical machine, whose only function is to point

out necessary logical implications to a decision-maker, without any of the

analyst's own beliefs ever entering into the analysis. This complete

neutrality of the analyst has been one of the big selling points of the

methodology, but it is now becoming apparent that the judgmental inputs to

an analysis come from the DM-analyst pair, viewed as a single entity.

This is especially noticeable with the present problem for, as Savage

(1954) noted, the logic of personal probability can only tell us we are

inconsistent; it can make no recommendation towards remedying the

situation. Hence a reconciliation methodology will of necessity include

judgments of some form from others than ,ust the subject. It is important

that the true role of the analyst and his position of power be

acknowledged and understood by practising analysts.

2. A positive definite symmetric matrix A is one satisfying the following

condition:

xTAx> 0 for all non-zero x.

It can be shown that a variance-covariance matrix must always be positive-

definite. Being positive-definite is the matrix equivalent of being a

positive number, and the condition that the variance-covariance matrix of



a multi-variate distribution be positive-definite is an extension of the

condition that the variance of a univariate distribution be positive.

A practical check on whether a symmetric matrix is positive-definite is to

discover the eigenvalues of the matrix. A theorem of linear algebra shows

that a symmetric matrix is positive-definite if and only if all its

eigenvalues are positive.

3. Here II and 12 denote the sets describing the information content of

ql and q2- We use the modulus symbol 1.i to denote the size of the set

(in mathematical terms, its cardinality). So, for example if A is the set

{ 1, 3, 5, 7, 9} , then I Al - 5.

4. Dalkey's point was made at the 18th Annual Bayesian Research

Conference, held in Los Angeles, February 14-15, 1980.
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